Modulation of Plasma Cyst(e)ine by Cisplatin*

WALLY E. WUNG and STEPHEN B. HOWELL†

Department of Medicine and The Cancer Center, University of California, San Diego, La Jolla, CA 92093, U.S.A.

Abstract—Some types of human malignant cells are cyst(e)ine auxotrophs. In 8 cancer patients given 10 courses of treatment cisplatin caused a mean (\pm S.D.) 83 \pm 17% decrease in plasma cyst(e)ine when measured before and 6 hr after drug infusion. The magnitude of the decrease correlated with peak plasma cisplatin concentration, and serial measurements demonstrated that in some patients plasma cyst(e)ine was still decreasing at 6 hr. The mean 6-hr plasma cyst(e)ine was low enough (9 \pm 9 μ M) to prevent the proliferation of human promyelocytic (HL-60) cells in culture.

INTRODUCTION

cis-DICHLORODIAMMINEPLATINUM(II) (DDP) is an important chemotherapeutic agent which has activity against a variety of human neoplasms [1]. Its cytotoxicity has been attributed to its ability to react with nucleophilic sites on DNA, forming interstrand and DNA-protein cross-links [2]. DDP can also react with nucleophilic sites on smaller molecules to form soluble complexes that are no longer cytotoxic. A number of sulfurcontaining compounds, including thiourea, thiosulfate and diethyldithiocarbamate, reduce DDP cytotoxicity [3-6], and cyst(e)ine blocks the binding of DDP to purified maleate dehydrogenase [7] and calf thymus DNA [8].

In mammalian cells cyst(e)ine can be synthesized from methionine via the trans-sulfuration pathway [9]. Methionine is converted first through a series of steps to cystathionine, and then in the final step cystathionine is cleaved by γ cystathionase (E.C. 4.2.1.15) (CSE) to cyst(e)ine, α -ketobutyrate and ammonia [10]. Prior studies have demonstrated that many malignancies of both human and murine origin are deficient in CSE and behave as cyst(e)ine auxotrophs, while non-malignant Epstein-Barr virus-transformed

lymphoid cell lines contain the enzyme and are cyst(e)ine prototrophs [11, 12]. CSE activity was also found to vary with the extent of leukemic infiltration of human marrow and lymphomatous replacement of the AKR mouse thymus, being much lower when the large numbers of malignant cells were present [13, 14]. The decreased CSE activity is due to a reduced amount of enzyme protein rather than to the presence of an inhibitor, or structural or kinetic differences [11, 14, 15]. Although CSE deficiency is probably not unique to malignant cells [15], these observations have fostered attempts to use depletion of plasma cyst(e)ine by enzymatic techniques as a means to develop a therapeutic program based on enzymatic depletion of plasma cyst(e)ine [12]. The fact the L-selenocysteine, a compound that blocks the transport of cyst(e)ine, produced responses in murine tumors and in man has given further impetus to this approach [16, 17].

The present study demonstrates that the treatment of cancer patients with DDP causes a marked reduction in plasma cyst(e)ine, that DDP reacts directly with cyst(e)ine and that plasma cyst(e)ine concentrations are reduced into a range that is low enough to impair the proliferation of human promyelocytic leukemia cells (HL-60) in vitro.

MATERIALS AND METHODS

Eight patients received treatment with 10 courses of DDP 90-180 mg/m² instilled into the peritoneal cavity for 4 hr. Patients receiving DDP at a dose greater than 90 mg/m² also received

Accepted 20 December 1982.

^{*}Supported in part by grant CA 23100 from the National Cancer Institute, National Institutes of Health. This work was conducted in part by the Clayton Foundation for Research, California Division. Dr. Howell is a Clayton Foundation Investigator.

[†]To whom requests for reprints should be addressed at: Department of Medicine T-012, University of California, San Diego, La Jolla, CA 92093, U.S.A.

sodium thiosulfate intravenously for 12 hr after the start of DDP exposure. The details of this treatment program have been described elsewhere [18].

Plasma amino acids were measured in heparinized samples immediately before and at 6 hr after the start of DDP exposure on 10 courses of treatment, and at more frequent intervals on 3 courses. Plasma samples were deproteinated with perchloric acid, which oxidized all of the cysteine to cystine, and the sum of the cysteine and cystine concentrations (cyst(e)ine concentration) were quantitated using a Beckman 119CL amino acid analyzer. The concentration of the other amino acids shown to block the reaction of DDP with DNA [8] (asparagine, glutamine, methionine, histidine and lysine) were also measured on the same samples.

DDP was measured using a modification of a high-pressure liquid chromatographic assay reported by Bannister *et al.* [19] which quantitates only those species of DDP that are still capable of reacting with a nucleophilic site on another molecule. Blood was drawn into ice-cold heparinized tubes, the plasma separated at 4°C and then the protein removed by centrifugation through CF 25 A filter cones (Amicon Corp., Lexington, MA). Reactive forms of DDP were immediately derived by addition of excess diethyldithiocarbamate and promptly subjected to chromatographic separation and quantification.

Chromatographic separation of cysteine from the DDP-cysteine complex was accomplished using Whatman No. 1 filter paper and ethanol acetic acid (water:ethanol:acetic acid = $50:50:0.1 \times v/v$) as the solvent.

RESULTS

Plasma amino acids were measured immediately before and 6 hr after the start of DDP exposure on 10 courses of treatment (Fig. 1a). The mean $(\pm S.D.)$ cyst(e)ine concentration prior to treatment was $50 \pm 29 \,\mu\text{M}$ and that at 6 hr after treatment was $9 \pm 9 \,\mu\text{M}$ (P < 0.01, t test for paired observations). Figure 1(a) shows the reduction in plasma cyst(e)ine for each individual case; the average $(\pm S.D.)$ decrease was $83 \pm 17\%$. DDP treatment did not change the plasma concentration of any of the other amino acids reportedly capable of blocking the binding of DDP to DNA [8] (asparagine, glutamine, methionine, histidine and lysine).

Serial measurements of plasma cyst(e) ine were made to define the time course of the DDP-induced effect in 3 patients (Fig. 1b). In 2 of the 3 cases plasma cyst(e) ine was still falling at 6 hr, so that the percentage decrease measured at 6 hr



Fig. 1. (a) Plasma cyst(e)ine concentrations were measured immediately before and 6 hr after infusion of DDP on 10 courses of treatment. (b) Time course of the decrease in plasma cyst(e)ine concentration in 3 patients following infusion of DDP. Plasma cyst(e)ine was measured using a Beckman 119 CL amino acid analyzer after oxidation of cysteine to cystine. DDP doses ranged from 90 to 180 mg/m² and were administered by the i.p. route.

probably underestimated the nadir cyst(e)ine concentration. Detailed measurements of the non-protein-bound reactive plasma DDP concentrations [18] were available for 7 of the 10 courses presented in Fig. 1(a). The peak DDP concentration occurred at 1 hr and averaged 9 μ M, and the mean area under the plasma elimination curve was 10 μ M·hr. The magnitude of the decrease in plasma cyst(e)ine correlated with the peak plasma DDP concentration (r=0.70, P<0.05) but not with the area under the DDP elimination curve.

Although previous studies have demonstrated that cysteine can prevent the binding of DDP to macromolecules, we sought direct evidence for a chemical reaction between DDP and cysteine. Graded concentrations of DDP were reacted with 83 μ M [14C]-cysteine for 4 hr at 37°C, and then the reactants and products were separated by paper chromatography. Two ninhydrin-reactive spots were demonstrated, one at the origin which comigrated with pure DDP-[14C]-cysteine complex, and one with an R_F of 0.7 which co-migrated with [14C]-cysteine. As the concentration of DDP was raised from 0 to $330 \mu M$ the predominant radioactive peak shifted from an R_F of 0.7 to the origin consistent with the formation of DDP-[14C]-cysteine complex. Little complex was formed at DDP concentrations of $<3.3 \mu M$ (DDP:cysteine molar ratio <0.4); at a DDP concentration of 330 µM (molar ratio of 4.0) most of the radioactivity was associated with the spot at the origin. The formation of the DDP-cysteine complex was time dependent with a rate constant of 0.069/hr at 3.3 μ M DDP and 0.17/hr at 330 μ M DDP. Elemental analysis of pure DDP-cysteine complex re-crystalized from water suggested a chemical structure consistent with Pt(cysteine)2. 4H₂O. These results establish that DDP does react directly with cysteine but indicate that the reaction rate is fairly low and that relatively little DDP-cysteine complex is formed at the concentrations of DDP found in the plasma of the patients included in this study ($<10~\mu m$).

In order to assess the biologic significance of the DDP-induced decrease in plasma cyst(e)ine, human promyelocytic leukemia cells (HL-60) [20], which contain a relatively low level of CSE protein [15], were cultured in cyst(e)ine-free media with dialyzed calf serum and graded concentrations of cyst(e)ine. Figure 2 demonstrates that the proliferation rate of this malignant cell line was very sensitive to cysteine concentration, and that at concentrations $\leq 20 \,\mu\text{M}$ there was cell death. Thus a mean 41-µM decrease in plasma cysteine concentration, from an average of 50 µM before treatment to an average of 9 µM 6 hr after treatment, was of a sufficient magnitude to make the difference between rapid proliferation and death of HL-60 cells in vitro.

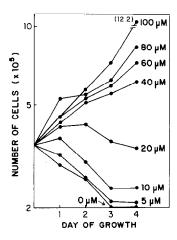


Fig. 2. The growth rate of human promyelocytic leukemia cells (HL-60) in cystine-free media supplemented with graded concentrations of cysteine from 0 to 100 μM.

DISCUSSION

Our data demonstrate a mechanism, in addition to the formation of adducts with macromolecules, by which DDP can inhibit cell proliferation. To the extent that malignant cells

are cysteine auxotrophs and the progenitor cells of dose-limiting normal tissues are cysteine prototrophs, this mechanism may be highly selective. Recent data indicate that while CSE deficiency is common in human malignancies, some types of tumor cells contain readily quantitated amounts of CSE [15], and thus the importance of plasma cysteine depletion may vary from patient to patient. Since cysteine can react directly with DDP and can block its binding to macromolecules [7, 8], the plasma concentration of cysteine and other thiol-containing compounds at the time of treatment may be an important determinant of the amount of active DDP that reaches both normal and malignant tissues in vivo.

The mechanism by which DDP reduces plasma cyst(e)ine remains uncertain. Although DDP can react directly with cysteine, the reaction rate is slow, and relatively little complex was formed even after 4 hr over the range of DDP concentrations observed in the plasma of these patients. However, DDP causes functional renal tubular abnormalities [21], so that renal cysteine wasting and other mechanisms related to the production of cysteine [22] may be involved. It is important to point out that the DDP-induced depletion of plasma cysteine may have a variety of biochemical effects that influence the sensitivity of cells to other chemotherapeutic agents. Depletion of cysteine may influence levels of other intracellular thiols, such as glutathione [23], that block the activity of cyclophosphamide [24] and melphalan [25]. In addition, depletion of essential amino acids and cysteine [26] cause a rapid and extensive decrease in de novo purine synthesis that may contribute to cell death.

These patients were treated as part of a phase I study of cisplatin given by the i.p. route and some patients also received infusions of sodium thiosulfate [18]. While the use of thiosulfate did not affect the decrease in plasma cyst(e)ine, the presence of high concentrations of DDP in the peritoneal cavity may have acted like a heat sink for cyst(e)ine, and it remains to be demonstrated that i.v. administration of DDP produces similar changes in plasma cyst(e)ine.

REFERENCES

- 1. EINHORN LH, WILLIAMS SD. Current concepts in cancer. The role of *cis*-platinum in solid-tumor therapy. *N Engl J Med* 1979, **300**, 289-291.
- 2. ZWELLING LA, ANDERSON T, KOHN KW. DNA-protein and DNA interstrand crosslinking by cis- and trans-platinum (II) diamminedichloride in L1210 mouse leukemia cells and relation to cytotoxicity. Cancer Res 1979, 39, 365-369.
- 3. BURCHENAL JH, KALAHER K, DEW K, LOKYS L, GALE G. Studies of cross-resistance, synergistic combinations and blocking of activity of platinum derivatives. *Biochemie* 1978, **60**, 961-965.

- 4. HOWELL SB, TAETLE R. The effect of sodium thiosulfate *cis*-dichlorodiammine-platinum (II) nephrotoxicity and antitumor activity in the L1210 leukemia. *Cancer Treat Rep* 1980, **64**, 611-616.
- 5. BORCH RF, PLEASANTS ME. Inhibition of cis-platinum nephrotoxicity by diethyldithiocarbamate rescue in a rat model. Proc Natl Acad Sci USA 1979, 76, 6611-6614.
- 6. YUHAS JM, CULO F. Selective inhibition of the nephrotoxicity of *cis*-dichloro-diammineplatinum (II) by WR-2721 without altering its antitumor properties. *Cancer Treat Rep* 1980, **64**, 57-64.
- 7. FRIEDMAN ME, TEGGINS JE. The blocking of the tetrachloroplatinate (II) inhibition of malate dehydrogenase by sulfur-containing amino acids. *Biochim Biophys Acta* 1974, 341, 277–283.
- 8. MORRIS CR, GALES GR. Interactions of an antitumor platinum compound with deoxyribonucleic acid, histones, L-amino acids, poly-L-amino acids, nucleosides and nucleotides. *Chem Biol Interact* 1973, 7, 305–315.
- 9. ROSE WL, WIXOM RL. The amino acid requirements of man. XIII. The sparing effect of cystine on the methionine requirement. *J Biol Chem* 1955, **216**, 763–773.
- 10. MATSUO Y, GREENBERG DM. A crystalline enzyme that cleaves homoserine and cystathionine. I. Isolation procedure and some physico-chemical properties. *J Biol Chem* 1958, 230, 545–560.
- 11. INGLEHART JD, YORK RM, MODEST AP, LAZARUS H, LIVINGSTON DM. Cystine requirement of continuous human lymphoid cell lines of normal and leukemic origin. *J Biol Chem* 1977, 252, 7184-7191.
- 12. UREN JR, LAZARUS H. L-Cyst(e) ine requirements of malignant cells and progress toward depletion therapy. Cancer Treat Rep 1979, 63, 1073-1079.
- 13. LIVINGSTON DM, FERGUSON C, GOLOGLY R et al. Accumulation of cystine auxotrophic thymocytes accompanying type C viral leukemogenesis in the mouse. Cell 1976, 7, 41-47.
- GLODE LM, GREENE HL, BIKEL I. γ-Cystationase in normal and leukemic cells. Cancer Treat Rep. 1979, 63, 1081-1088.
- 15. GLODE LM, EPSTEIN A, SMITH CG. Reduced γ-cystathionase protein content in human malignant leukemia cell lines as measured by immunoassay with monoclonal antibody. *Cancer Res* 1981, 41, 2249-2254.
- WEISBERGER A, SUHRLAND L. Studies on analogs of L-cysteine and L-cystine. II. The
 effect of selenium cystine on Murphy lymphosarcoma tumor cells in the rat. Blood 1956,
 11, 11-18.
- 17. WEISBERGER A, SUHRLAND L. Studies on analogs of L-cysteine and L-cystine. III. The effect of selenium cystine on leukemia. *Blood* 1956, 11, 19-30.
- 18. HOWELL SB, PFEIFLE CL, WUNG WE et al. Toxicity and pharmacokinetics of intraperitoneal cisplatin in combination with systemic thiosulfate. Ann Intern Med 1982, 97, 845-851.
- 19. BANNISTER SJ, STERNSON LA, REPTA AJ. Urine analysis of platinum species derived from *cis*-dichlorodiammine platinum (II) by high-performance liquid chromatography following derivatization with sodium diethyldithiocarbamate. *J Chromatogr* 1979, 173, 333–342.
- 20. COLLINS SJ, GALLO RC, GALLAGHER RE. Continuous growth and differentiation of human mycloid leukemic cells in suspension culture. *Nature* 1977, **270**, 347-349.
- 21. Schilsky RL, Anderson T. Hypomagnesemia and renal magnesium wasting in patients receiving cisplatin. *Ann Intern Med* 1979, **90**, 929-931.
- 22. REED DJ, ELLIS WW. Interorgan glutathione and γ-glutamyl transpeptidase inactivation by the antitumor agent L-(αS,5S)-α-amino-3-chloro-4,5-dihydro-5-isoxazoleacetic acid. *Proc Am Assoc Cancer Res* 1981, 22, 36.
- 23. MEISTER A. 5-Oxoprolinuria (pyroglutamic aciduria) and other disorders of glutathione biosynthesis. In: STANBURY JB, WYNGAARDEN JB, FREDRICKSON DS, eds. The Metabolic Basis of Inherited Disease. New York, McGraw-Hill, 1978, 4th Edn, 330.
- 24. GURTOO HL, HIPKENS JH, SHARMA SD. Role of glutathionine in the metabolism-dependent toxicity and chemotherapy of cyclophosphamide. *Cancer Res* 1981, 41, 3584-3591.
- 25. VISTICA DT, SCHUETTE BP, SUZUKAKA K. Dechlorination of L-phenylalanine mustard (L-PAM) by sensitive and resistant tumor cells and its relationship to intracellular glutathione (GSH) content. *Proc Am Soc Clin Oncol* 1981, 22, 237.
- BOSS GR, ERBE RW. Decreased purine synthesis during amino acid starvation of human lymphoblasts. J Biol Chem 1982, 257, 4242-4247.